7-6 Practice

Transformations of Exponential Functions

Write a function g(x) to represent the translated graph.

1.
$$f(x) = 4.6^x + 2$$
 moves 5 units up

2.
$$f(x) = 0.5^x$$
 moves 2 units down

3.
$$f(x) = 4^x$$
 moves 3 units right

4.
$$f(x) = 9^x$$
 moves 1 unit left

5.
$$f(x) = 6^x$$
 is compressed vertically by a factor of $\frac{1}{4}$ **6.** $f(x) = 2^x$ is stretched vertically by a factor of 3

6.
$$f(x) = 2^x$$
 is stretched vertically by a factor of 3

Tell how the transformed function compares to the parent function.

11.
$$f(x) = 5^x$$
; $g(x) = 5^{3x}$

12.
$$f(x) = 2^x - 5$$
; $g(x) = 2^{0.4x} - 5$

13.
$$f(x) = 3.8^x$$
; $g(x) = -3.8^x$

14.
$$f(x) = 2^x + 3$$
; $g(x) = -0.5(2^x + 3)$

15.
$$f(x) = 5.2^x$$
; $g(x) = 5.2^{-x}$

16.
$$f(x) = 4^x$$
; $g(x) = 4^{-x} - 10$

17.
$$f(x) = 2.8^x$$
; $g(x) = -2.8^{x+2}$

18.
$$f(x) = 6^x - 1$$
; $g(x) = 6^{-x} + 8$

- **19.** Describe how the graph of $g(x) = -\frac{1}{4} \left[2^{(x+1)} 5 \right]$ is related to the parent function of $f(x) = 2^x$.
- **20.** Write an exponential function that is the parent function $f(x) = 5^x$ stretched vertically by a factor of 2, translated 4 units left and 1 unit down.